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ABSTRACT

Time series modeling is uniquely challenged by the presence of autocorrelation in both historical
and label sequences. Current research predominantly focuses on handling autocorrelation within
the historical sequence but often neglects its presence in the label sequence. Specifically, emerging
forecast models mainly conform to the direct forecast (DF) paradigm, generating multi-step forecasts
under the assumption of conditional independence within the label sequence. This assumption
disregards the inherent autocorrelation in the label sequence, thereby limiting the performance of DF-
based models. In response to this gap, we introduce the Frequency-enhanced Direct Forecast (FreDF),
which bypasses the complexity of label autocorrelation by learning to forecast in the frequency
domain. Our experiments demonstrate that FreDF substantially outperforms existing state-of-the-art
methods and is compatible with a variety of forecast models. The scripts and log files will be released
at https://github.com/Master-PLC/FreDF1.

1 Introduction

Time series modeling aims to encode historical sequence to predict future data, which is crucial in diverse applications:
long-term forecast in weather prediction [3, 40], short-term prediction in industrial maintenance [24, 7, 35], and missing
data imputation in healthcare [30]. A key challenge in time series modeling, distinguishing it from canonical regression
tasks, is the presence of autocorrelation. It refers to the dependence between time steps, which exists in both the input
and label sequences.

To accommodate autocorrelation in input sequences, diverse forecast models have been developed [28, 5, 8], exemplified
by recurrent [29], convolution [37] and graph neural networks [25, 4, 11]. Recently, Transformer-based models,
utilizing self-attention mechanisms to dynamically assess autocorrelation, have gained prominence in this line of
work [20, 26, 13, 38]. Concurrently, there is a growing trend of incorporating frequency analysis into forecast
models [41, 21]. By representing input sequence in the frequency domain, the complexity of portraying autocorrelation
is bypassed, which improves forecast performance of Transformers [47, 23], GNNs [42] and MLPs [43]. These
pioneering works highlight the importance of autocorrelation and frequency analysis in advanced time series modeling.

Another critical aspect is the autocorrelation in the label sequence, where each step in the label sequence is autoregres-
sively generated. This phenomenon, known as label autocorrelation, is often neglected in current forecast techniques.
Specifically, modern methods predominantly adopt the direct forecast (DF) paradigm [20, 27], which generates multi-
step forecasts simultaneously using a multi-output head [18, 16] and seeks to minimize the forecast errors across all

1If you have any queries, feel free to contact us through haohaow@zju.edu.cn and 22132045@zju.edu.cn.
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steps concurrently. This approach implicitly assumes the step-wise independence within the label sequence given input
sequence, thereby ignoring the existence of label autocorrelation. Such discrepancy between model assumption and data
characteristic results in suboptimal forecast quality, underscoring a huge limitation in existing direct forecast paradigm.

To handle this limitation, we propose Frequency-enhanced Direct Forecast (FreDF), a simple yet effective approach
that refines the DF paradigm by aligning the forecasts and label sequence in the frequency domain. By transforming
to the frequency domain where bases are orthogonal and independent, the impact of autocorrelation is found to be
effectively diminished. Therefore, FreDF bypasses the discrepancy between the assumption of DF and the existence of
label autocorrelation, while retaining DF’s benefits such as sample efficiency and implementation simplicity. The main
contributions in this work can be summarized below.

• We recognize and formulate the impact of label autocorrelation ignored by current DF paradigm in forecasting.
• We propose FreDF for time series forecasting. As an embarrassingly simple update to DF, it handles label autocorre-

lation by learning to forecast in the frequency domain. To our knowledge, it is the first attempt to employ frequency
analysis for enhancing forecast paradigms.

• We verify the efficacy of FreDF through extensive experiments, where it outperforms state-of-the-art methods
substantially and supports various forecast models.

2 Preliminaries and Related Work

2.1 Problem Definition

In this study, uppercase letters (e.g., Y ) denote random matrix, with subscripts (e.g., Yi,j) indicating matrix entries. An
uppercase letter followed by parentheses (e.g., Y (n)) represents a sampled observation of the random matrix.

A multi-variate time series can be represented as a sequence [X(1), X(2), · · · , X(N)], where X(n) ∈ R1×D is
the sample at the n-th timestamp with D covariates [20, 37]. Define an input sequence L ∈ RL×D and a label
sequence Y ∈ RT×D where L and T are sequence lengths. At the n-th step, these sequences are observed as L(n) =
[X(n− L + 1), ..., X(n)] and Y (n) = [X(n+ 1), ..., X(n+T)]. The goal of time series forecast is identifying a
model g : RL×D → RT×D within a model family G (e.g., decision trees, neural networks) that generates forecasts
Ŷ = g(L) approximating the label sequence Y .

There are two critical aspects to accommodate autocorrelation in this task: (1) selecting a model family G that encodes
autocorrelation in input sequences, which underscores the design of model architectures; (2) generating forecasts that
respect label autocorrelation, which highlights the efficacy of forecast paradigms. Our survey concentrates on examining
both aspects for accommodating autocorrelation.

2.2 Model Architecture

To exploit autocorrelation in the input sequences, diverse architectures have been developed. Initial statistical methods
include VAR [36] and ARIMA [1]. Subsequently, neural networks became increasingly prominent for their ability to
automate feature interaction and capture nonlinear correlations. Exemplars include RNNs (e.g., DeepAR [29], S4 [10]),
CNNs (e.g., TimesNet [37], SCINet [17]), and GNNs (e.g., MTGNN [25]), each designed to effectively encode
autocorrelation. Current progress reaches a debate between Transformer-based and MLP-based architectures, each with
its advantages and limitations [19, 22, 6]. Transformers (e.g., PatchTST [27], iTransformer [20], CrossFormer [45]) excel
in encoding autocorrelation but come with high computational costs, while MLPs (e.g., DLinear [44], TSMixer [9, 6].)
are more efficient but less adept at autocorrelation encoding.

An emerging approach is representing sequence in the frequency domain. This method, in comparison to modeling
autocorrelation in the temporal domain, manages autocorrelation effectively with limited cost. A prominent example is
FedFormer [47], which computes attention scores in the frequency domain, leading to improved efficiency, efficacy, and
noise reduction capabilities. The success of this technique extends to various architectures like Transformers [47, 39],
MLPs [43] and GNNs [42, 4], which makes it a versatile plugin in the design of neural networks for time series forecast.

2.3 Forecast Paradigm

There are two paradigms to generate multi-step forecast: iterative forecast (IF) and direct forecast (DF) [18]. The IF
paradigm forecasts one step at a time, using previous predictions as input for subsequent forecasts. This recursive
approach respects label autocorrelation in forecast generation, widely used by early-stage methods [14, 29]. However, IF
is prone to high variance due to error propagation, which significantly impairs performance in long-term forecasts [31].
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Handling the error propagation problem of IF, DF generates multi-step forecasts simultaneously using a multi-output
head, featured by fast inference, implementation ease and superior accuracy. As a result, starting with Informer [16],
DF has been dominant for multi-step forecast, continuing to be employed in recent works such as TimesNet [37],
PatchTST [27] and iTransformer [20].

Significance of this work. Our work augments the DF paradigm by enabling forecast in the frequency domain. Unlike
recent advancements [43, 47, 42] that incorporate frequency analysis to refine model architectures for managing input
autocorrelation, our work focuses on improving the forecast paradigm for managing label autocorrelation, which is an
unexplored and innovative aspect of time series modeling.

3 Direct Forecast meets Autocorrelation

3.1 Oversight of Label Autocorrelation

In this section, we delineate the DF paradigm and its neglect of label autocorrelation. DF employs a multi-output model
gθ : RL×D → RT×D for generating T-step forecasts Ŷ = g(L). Let Yt ∈ R1×D be the t-th step of Y , Yt(n) be the
n-th sampled observation of it; the model parameters θ are optimized by minimizing the mean squared error (MSE):

L(tmp) : =

N∑
n=1

∥Y (n)− gθ (L(n))∥22 ,=
N,T∑
n,t=1

∥∥∥Yt(n)− Ŷt(n)∥∥∥2
2
. (1)

...

Correlation modeled by DF. 
Label autocorrelation
ignored by DF.
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Figure 1: Visualization of autocorrelation in the fore-
cast window Y . (a) Data generation process of time-
series with dependencies depicted as arrows. (b) The
autocorrelation identified with DML, where each el-
ement at the i-th row and j-th column indicates the
absolute causation strength of Yi → Yj . The lower
part is masked to preserve causation.

The DF paradigm computes the forecast error at each step
independently, treating them as separate tasks. This method,
while practical, oversights the autocorrelation present within
Y . We provide a theoretical rationale for this limitation in
Theorem 3.1, framed from a maximum likelihood estimation
perspective. The theorem posits that the likelihood of θ can
be accurately depicted by (1) only if the assumption of condi-
tional independence holds: different steps in Y are mutually
independent given L. This assumption contradicts the presence
of label autocorrelation, which results in a biased likelihood
and a deviation from the maximum likelihood principle during
model training.
Theorem 3.1. Given input sequence L and label sequence Y ,
the negative log-likelihood of the model g parameterized by θ
can be expressed as (1) only if Yt is independent on Yt′ for any
1 ≤ t, t′ ≤ T given L, expressed as Yt ⊥⊥ Yt′ | L. The proof
is provided in Appendix B.

This issue can be visualized in Figure 1 (a). Specifically, label
sequence is autoregressively generated, with the value of Yt+1

being highly dependent on Yt as indicated by the blue arrows. In contrast, the learning objective (1) presumes conditional
independence as indicated by the black arrows, neglecting the label autocorrelation as indicated by the blue arrows.
Such discrepancy between model assumption and data characteristic limits forecast performance.

3.2 Empirical Evidence

In this section, we empirically verify the presence of label autocorrelation in time series data. As depicted in Figure 1
(a), verifying label autocorrelation entails quantifying the causal relationship Yt → Yt+1. However, this quantification
is complex due to the confounding effect of L, which induces pseudo-correlation. This pseudo-correlation obscures the
actual causal relationship, rendering correlation measures like Pearson correlation ineffective2.

To handle the confounding effect, we utilize tools from causal inference. Specifically, we treat L as the confounder to
adjust, Yt as the treatment, and Yt+1 as the outcome. Double machine learning (DML), a reliable method in causal
inference, is employed for accurately quantifying the causation Yt → Yt+1 while eliminating the confounding effect.
For verification efficiency and without loss of generality, we focus on the last feature in Yt, as the analysis does not

2The fork structure Yt ← L→ Yt+1 produces psudeo-correlations between Yt and Yt+1 which confounds the true autocorrelation
Yt → Yt+1. This is a known issue namely confounding effect that has been intensively investigated in causal inference [34, 33, 15].
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depend on feature dimension. Experiments are conducted on the Weather dataset with T = 192. The results are
presented in Figure 1 (b) with key observations below.

• Diagonal elements consistently show values of 1, which is expected as the treatment and outcome are identical. The
outcome’s change mirrors the treatment’s change.

• Non-diagonal elements demonstrate significant values, with nearly 37.5% exceeding 0.3. It means that different steps
in Y are interdependent given L, affirming the presence of label autocorrelation. Additionally, the autocorrelation
strength displays a regular variation pattern, evidenced by alternating light and dark areas in the figure, which likely
suggests a periodic nature in the series3.

In summary, we have verified the existence of autocorrelation in the label sequence, which contradicts the independence
assumption of the DF paradigm in Theorem 3.1.

4 Proposed Method

4.1 Bypass Autocorrelation with Domain Transform
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Figure 2: Dependencies between frequency compo-
nents, measured by the real part (a) and imaginary part
(b). Due to the symmetry of Fourier transform, only
the half of F is visualized for clarity. The element
at the i-th row and j-th column indicates the absolute
causation strength Fi → Fj .

As established in Section 3, the canonical DF paradigm suf-
fers from suboptimal performance due to its oversight of label
autocorrelation. A promising strategy to overcome this limita-
tion involves representing the label sequence in a transformed
domain formed with orthogonal bases, denoted as F = F(Y ).
Specifically, it can be effectively implemented using the Fourier
transform in Definition 2, which projects the sequence onto
orthogonal bases associated with different frequencies. By
transforming the label sequence into this orthogonal frequency
domain, the dependence from label autocorrelation could be
effectively mitigated.
Definition 4.1. The Fourier transform of a sequence x =
[x0, ..., xT−1] is defined as its projection onto a set of orthog-
onal Fourier bases with different frequencies. The projection
associated with frequency k is computed as

x
(F)
k =

T−1∑
t=0

xt exp(−j(2π/T)kt), 0 ≤ k ≤ T− 1, (2)

where i is the imaginary unit which is defined as the square root of -1, exp(·) is the Fourier basis associated with the
frequency k which is orthogonal for different k values. Fourier transform refers to the projections associated with
frequencies 0 ≤ k ≤ T− 1, denoted as x(F) = F(x), which can be computed via the fast Fourier transform (FFT)
algorithm with complexity O(L log L).

To substantiate this claim, we employ DML to assess the dependencies between frequency components in the trans-
formed representation F . In this context, L is treated as the confounder, Fk (the component of F corresponding to
frequency k) as the treatment, and Fk′ as the outcome.

According to Figure 2, most non-diagonal elements show negligible values, with merely about 3.6% exceeding
0.1, suggesting that frequency components of F are almost independent given L3. Such independence implies that
representing label sequence in the frequency domain bypasses the dependency raised by autocorrelation in the time
domain, aligning with DF’s independence assumption in Theorem 1. This observed alignment underscores the potential
of learning to forecast in the frequency domain below.

4.2 Model Implementation

In this section, we construct FreDF, a simple yet effective update to the current DF training paradigm. The core
technique contribution is aligning the forecasts generated by DF and the label sequences in the frequency domain.

The workflow is depicted in Figure 3. At a given time-stamp n, the historical sequence L(n) is input into the model
to generate T-step forecasts, denoted as Ŷ (n) = g(L(n)). The forecast error in the time domain L(tmp) is calculated

3More implementation details, empirical evidence and formal analysis are provided in Appendix A.
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Figure 3: The main components of the Fourier-enhanced DF approach. Key operations in the time and frequency
domains are highlighted in red and blue, respectively. The output of model g is firstly used to compute the temporal loss
L(tmp), and subsequently conducted FFT to calculate the frequency loss L(feq).

Table 1: Long-term forecasting performance averaged over forecast lengths. Full results are present in Table 7.

Models
FreDF iTransformer FreTS TimesNet Crossformer TiDE DLinear FEDformer Autoformer Transformer TCN LSTM

(Ours) (2024) (2023) (2023) (2023) (2023) (2023) (2022) (2021) (2017) (2017) (1998)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.392 0.399 0.415 0.416 0.407 0.415 0.413 0.418 0.558 0.532 0.419 0.419 0.404 0.407 0.440 0.451 0.596 0.517 0.943 0.733 0.891 0.632 0.656 0.567

ETTm2 0.278 0.319 0.294 0.335 0.335 0.379 0.297 0.332 1.633 0.782 0.358 0.404 0.344 0.396 0.302 0.348 0.326 0.366 1.322 0.814 3.411 1.432 1.757 0.979

ETTh1 0.437 0.435 0.449 0.447 0.488 0.474 0.478 0.466 0.628 0.574 0.541 0.507 0.462 0.458 0.441 0.457 0.476 0.477 0.993 0.788 0.763 0.636 0.763 0.636

ETTh2 0.371 0.396 0.390 0.410 0.550 0.515 0.413 0.426 2.136 1.130 0.611 0.550 0.558 0.516 0.430 0.447 0.478 0.483 3.296 1.419 3.325 1.445 1.817 1.029

ECL 0.170 0.259 0.176 0.267 0.209 0.297 0.214 0.307 0.182 0.279 0.251 0.344 0.225 0.319 0.229 0.339 0.228 0.339 0.274 0.367 0.617 0.598 0.329 0.406

Traffic 0.421 0.279 0.428 0.286 0.552 0.348 0.636 0.335 0.553 0.292 0.760 0.473 0.673 0.419 0.611 0.379 0.637 0.399 0.680 0.376 1.001 0.652 0.890 0.487

Weather 0.254 0.274 0.281 0.302 0.255 0.299 0.262 0.288 0.262 0.324 0.271 0.320 0.265 0.317 0.311 0.361 0.349 0.391 0.632 0.552 0.584 0.572 0.306 0.357

according to (1). Subsequently, FreDF transform both the forecasts and the label sequences into the frequency domain,
denoted as F̂ = F(Ŷ ) and F = F(Y ). The forecast error in the frequency domain is computed below

L(feq) : =

N∑
n=1

∣∣∣F (n)− F̂ (n)∣∣∣ , (3)

where each term in the summation is a matrix of complex numbers; for a matrixA ∈ CN×N, |A| denotes the operation of
computing and summing the modulus of each element in the matrix, with the modulus of a complex number a = ar+iai
calculated as

√
a2r + a2i . Notably, we do not use the squared loss form, as is typical in (1), due to the distinct numerical

characteristics of the label sequence in the frequency domain. Specifically, different frequency components often exhibit
vastly varying magnitudes, with lower frequencies having higher volumes by several orders of magnitude compared to
higher frequencies, which renders squared loss methods unstable.

Finally, the forecast error in the time and frequency domains are fused as follow, where 0 ≤ α ≤ 1 controls the
relatively strength of frequency-domain alignment:

Lα := α · L(feq) + (1− α) · L(tmp). (4)

By aligning generated forecasts and label sequence in the frequency domain, FreDF bypasses the autocorrelation effect
while preserving the benefits of DF such as efficient inference and multi-task capabilities. A notable property of FreDF

5
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Table 2: Short-term forecast performance averaged over forecast lengths. The full results are present in Table 8.

Models
FreDF iTransformer FreTS Crossformer DLinear Fedformer

(Ours) (2024) (2023) (2023) (2023) (2022)

SMAPE 12.112 12.298 12.169 71.332 12.480 12.734

MASE 1.648 1.680 1.660 16.626 1.674 1.702

OWA 0.877 0.893 0.883 6.977 0.898 0.914

is its model and transformation agnosticism. It is compatible with various forecast models g (e.g., Transformers and
MLPs) and transformations F (e.g., Chebyshev and Legendre transforms). This flexibility significantly broadens the
potential application scope of FreDF.

5 Experiments

5.1 Setup

Datasets. The datasets for long-term forecast and imputation include ETT (4 subsets), ECL, Traffic and Weather
following [39]. The dataset for short-term forecast is M4 following [37]. Each dataset is divided chronologically for
training, validation and test. Detailed dataset descriptions are provided in Appendix D.1.

Baselines. Our baselines include various established models in the time series field, which can be grouped into three
categories: (1) Transformer-based methods: Transformer [32], Autoformer [39], FEDformer [47], Crossformer [45],
iTransformer [20]; (2) MLP-based methods: DLinear [44], TiDE [8], FreTS [43]; (3) other notable models: LSTM [46],
TimesNet [37], TCN [2]. Notably, iTransformer [20] is the state-of-the-art baseline released in ICLR-24.

Implementation. The baseline models are reproduced using the scripts sourced from TimesNet [37]. They are trained
with Adam [12] optimizer to minimize the MSE loss. When integrating FreDF to enhance an established model, we
respect the original hyperparameter settings, merely tuning α and learning rate. Roughly adjusting the learning rate is
essential since the magnitude of MSE loss diverges by multiple orders between the time and frequency domains. More
implementation details are provided in Appendix D.

5.2 Overall Performance

5.2.1 Long-term Forecast

The performance on the long-term forecast task is present in Table 1, where we select iTransformer as the forecast
model g and enhance it with FreDF paradigm. The results are averaged over forecasting lengths T=96, 192, 336 and
720, with the best results bolded and the second best results underlined. The main observations are summarized below.

• FreDF improves the performance of iTransformer substantially. For instance, on the ETTm1 dataset, FreDF decreases
the MSE of iTransformer by 0.019. This improvement is comparable to the advancement observed in the dataset over
1.5 years, from Fedformer in 2022 to TimesNet in 2023, with a MSE reduction of 0.017. Similar gains are evident in
other datasets, which can be attributed to reconciliation of label autocorrelation with the DF paradigm, validating
efficacy of FreDF.

• FreDF achieves leading performance compared to a range of competitive baseline models. Notably, FreDF enhances
the performance of iTransformer to surpass even those models that originally outperformed iTransformer on some
datasets. It indicates that the improvements by FreDF exceed those achievable through dedicated architectural design
alone, emphasizing the importance of label autocorrelation management and FreDF.

5.2.2 Short-term Forecast

In this section, we extend our scope to short-term forecast task. The results are summarized in Table 2, where we
employ the FreDF paradigm to enhance FreTS which is identified as the best baseline in this task. Empirically, FreDF
retains efficacious in this task, improving FreTS across three key metrics. The volume of improvement is commendable
since the performance difference among competing models is typically slight in this task.

6
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Table 3: Imputation performance averaged over missing ratios. The full results are present in Table 9.

Models
FreDF iTransformer TiDE Crossformer Fedformer

(Ours) (2024) (2023) (2023) (2023)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.002 0.032 0.003 0.041 0.014 0.083 0.011 0.078 0.069 0.179

ETTm2 0.003 0.035 0.003 0.036 0.024 0.103 0.033 0.133 0.187 0.301

ETTh1 0.002 0.029 0.003 0.037 0.003 0.038 0.013 0.080 0.139 0.276

ETTh2 0.003 0.033 0.004 0.043 0.005 0.047 0.002 0.026 0.356 0.417

ECL 0.001 0.019 0.002 0.033 0.003 0.037 0.010 0.082 0.169 0.298

Weather 0.001 0.013 0.001 0.015 0.002 0.013 0.007 0.061 0.057 0.153

Table 4: Results of system-level ablation study averaged over forecast lengths. Full results are present in Table 10.

L(tmp) L(feq) Weather ETTm1 ETTh1

MSE MAE MSE MAE MSE MAE

! % 0.2810 0.3021 0.4146 0.4156 0.4491 0.4467

% ! 0.2573 0.2766 0.3929 0.3996 0.4379 0.4353

! ! 0.2538 0.2739 0.3920 0.3989 0.4374 0.4351

5.2.3 Missing Data Imputation

In this section, we investigate missing data imputation task. iTransformer, identified as the best baseline for imputation
tasks, is selected as the testbed for FreDF. All models are trained in an autoencoding manner: given input sequences
with missing entries, the models are tasked with reconstructing the non-missing entries in the training phase, and
employed to impute the missing entries in the inference phase.

The results in Table 3 demonstrate the efficacy of FreDF in this task: it improves the performance of iTransformer
significantly, outperforming other competitive methods. A unique aspect of this task is that the label sequences are
irregularly sampled due to missing entries, which disrupts the physical semantics associated with the Fourier transform.
This implies that the principal strength of FreDF lies beyond the semantics of Fourier transform. Instead, its efficacy is
rooted in its capability to align the data property and the model assumption underlying DF paradigm.

5.2.4 Showcases
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Figure 4: Forecast sequences with and without FreDF.

In this section, we visualize the forecast sequences to highlight
the improvements of FreDF in forecast quality. A ETTm2
snapshot with T=336 is depicted in Figure 4. While the model
without FreDF can follow the general trends of the label se-
quence, it struggles to capture the sequence’s high-frequency
components, resulting in a forecast with a visibly lower fre-
quency. Additionally, the forecast sequence exhibits numerous
burrs. These issues reflect the limitations of forecasting in the
time domain, namely the difficulty in capturing high-frequency
components and the neglect of autocorrelation between steps.

FreDF addresses these limitations effectively. The forecasts
generated under FreDF not only keep pace with the label se-
quence, accurately capturing high-frequency components, but also exhibit a smoother appearance with fewer irregulari-
ties, due to its awareness of autocorrelation.
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Table 5: Results of component-level ablation study averaged over forecast lengths.

Amp. Pha.
ECL ETTm1 ETTh1

MSE MAE MSE MAE MSE MAE

! % 0.3356 0.4060 0.5936 0.5169 0.7303 0.5968

% ! 0.1836 0.2752 0.4204 0.4173 0.4751 0.4487

! ! 0.1698 0.2594 0.3920 0.3989 0.4374 0.4351
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Figure 5: Performance given varying strength of frequency loss α. Experiments are conducted on the ETTm1 (a-b) and
ECL (c-d) datasets with forecast lengths being 192 and 336.

5.3 Ablation Studies

Temporal loss v.s. frequency loss. In this section, we focus on dissecting the contributions of the temporal (L(tmp))
and frequency domain (L(feq)) loss components. Utilizing the iTransformer as the forecast model, the ablation study’s
results are detailed in Table 4. The main observations are summarized below.

• Transforming forecasts to the frequency domain yields consistent improvements. It is evidenced by the huge
performance gains across all datasets when replacing L(tmp) with L(feq). The underlying rationale is that label
autocorrelation can be effectively managed in the frequency domain, aligning better with the conditional independence
assumption inherent in DF.

• Learning to forecast in both domains generally showcase improvement compared to relying solely on one domain.
However, the improvement over L(feq) is marginal. Hence, exclusively focusing on frequency domain forecasting
emerges as a viable strategy in most cases, offering promising performance without the complexity of balancing
learning objectives.

Amplitude v.s. Phase Characteristics. In this analysis, we explore the impact of amplitude and phase alignment
on FreDF. Minimizing the frequency loss (3) ensures alignment of both amplitude and phase characteristics between
the forecast and actual label sequences in the frequency domain. In the field of signal processing, both amplitude and
phases are foundational for accurately representing the dynamics of signals.

Our findings from Table 5 indicate that both amplitude and phase characteristics are essential for FreDF. Notably, phase
alignment emerges as particularly crucial. Solely aligning amplitude characteristics without phase alignment results
in poor performance. This outcome is reasonable, since minor deviations in phase characteristics could correspond
significant discrepancies in the time domain.

5.4 Hyperparameter Sensitivity

In this section, we vary the frequency loss strength α on the efficacy of FreDF. The results are summarized in Figure 5.
Overall, increasing α from 0 to 1 results in a reduction of forecast error, albeit with a slight increase towards the end of
this range. For instance, on the ECL dataset with T=192, both MAE and MSE decrease from approximately 0.258 and
0.167 to 0.247 and 0.158, respectively. Such trend of diminishing error seems consistent across different prediction
lengths and datasets, supporting the benefit of learning to forecast in the frequency domain. Interestingly, the optimal
reduction in forecast error typically occurs at α values near 1, such as 0.8 for the ETTh1 dataset, rather than at the
absolute value of 1. Therefore, unifying supervision signals from both time and frequency domains brings performance
improvement. More empirical evidence on other datasets and forecast models are extensively provided in Appendix E.

8



FreDF: Learning to Forecast in Frequency Domain A PREPRINT

iTrans. DLine. Auto. Trans.

2
−2

2
−1

M
AE

-3.0%
-3.7% -6.0%

-4.0%
with FreDF
w/o FreDF

(a)
iTrans. DLine. Auto. Trans.

2
−3

2
−2

M
SE -3.4%

-3.0% -7.0%
-5.2%

with FreDF
w/o FreDF

(b)
iTrans. DLine. Auto. Trans.

2
−2

2
−1

M
AE -9.5% -2.0%

-12.6%

-27.2%with FreDF
w/o FreDF

(c)
iTrans. DLine. Auto. Trans.

2
−2

2
−1

M
SE -9.7% -0.9%

-12.9%

-32.8%with FreDF
w/o FreDF

(d)

Figure 6: Performance of forecast models with and without FreDF on the ECL (a-b) and Weather (c-d) datasets. Relative
reduction of forecast error is reported in percentage9.

5.5 Generalization Studies

5.5.1 Generalization to model specifications

In this section, we investigate the generality of FreDF in augmenting diverse neural forecasting models. Specifically,
we assess the impact of FreDF on four well-known models: iTransformer, DLinear, Autoformer, and Transformer, with
the outcomes illustrated in Figure 64.

Overall, FreDF exhibits remarkable capacity to enhance the performance of these forecasting models. In particular,
Transformer-based models, such as the Autoformer and Transformer, benefit substantially from FreDF. For instance,
on the ECL dataset, FreDF empowers Autoformer, a model initially introduced in 2021, to outperform DLinear, a
cutting-edge model developed in 2023. Such compelling evidence of FreDF’s generality is further detailed in Appendix
E. These results underscore the broad applicability of FreDF in enhancing various neural forecast models, establishing
its potential as a universally applicable training approach within the realm of time series forecasting.

5.5.2 Generalization to FFT implementations
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M
AE
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2
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2
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M
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Figure 7: Performance of FreDF with different FFT im-
plementations. T and D refers to using 1-dimensional
FFT along the time and feature dimension, respec-
tively; 2D refers to using 2-dimensional FFT on both
dimensions9.

In this section, we generalize the concept of label autocorrela-
tion: label correlation exists not only between different steps,
but also among different variables in multivariate forecasting.
Therefore, we implement FFT along the time and variable di-
mension to handle the corresponding correlations, with the
outcomes illustrated in Figure 7.

In general, conducting FFT along the time and variable axis
brings similar performance gain, which showcases the exis-
tence of correlation between different steps and variables, re-
spectively. In particular, performing FFT on the time axis ex-
hibits slight performance gain, which underscores the relative
importance of auto-correlation in the label sequence. Finally,
a strategic approach is viewing the multivariate sequence as a
image, performing 2-dimensional FFT on both time and vari-
able axis, which further improves the performance of FreDF
since it accommodates the correlations between different steps
and variables simultaneously.

5.5.3 Generalization to other transforms

In this section, we extend the applicability of FreDF by employing domain transformations based on a diverse array
of established polynomial sets. Each polynomial set is adept at capturing specific data patterns, such as trends and
periodicity that are challenging to learn in the time domain. The results are summarized in Figure 8.

The performance generally aligns with practical expectations. Notably, projections onto Legendre and Fourier bases
demonstrate superior performance. This superiority is attributed to their mutual orthogonality, a feature not guaranteed
by other polynomial sets without typical weighting factors, as detailed in Appendix C. It highlights the significance
of orthogonality in the selection of basis sets for the FreDF paradigm which is pivotal in effectively managing
autocorrelations.

4The forecast errors are averaged over prediction lengths with error bars representing 95% confidence intervals.
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Figure 8: Performance given different implementation of domain transformation. Experiments are conducted on ETTh1
(a-b) and ETTm1 (c-d) with forecast lengths being 192 and 336.
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Figure 9: Learning curve on the ETTh1 (a-b) and ECL (c-d) datasets.

5.6 Learning-curve Analysis

In this section, we investigate the sample efficiency of learning in the time versus frequency domains, with the
corresponding learning curves showcased in Figure 9. Notably, given limited training data, learning in the frequency
domain demonstrates remarkable efficacy. Specifically, with only 30% of the training data, it achieves performance
comparable to time domain learning using the full training dataset.

The underlying reason for this enhanced sample efficiency can be attributed to the consistent and more straightforward
nature of the data representation. For instance, a sliding window on a sine signal yields a set of distinct sequences in
the time domain. However, in the frequency domain, these sequences present a similar pattern: a prominent spike at a
specific frequency and negligible values elsewhere. This uniformity simplifies the learning process, as the patterns are
more consistent and straightforward to decipher, thereby reducing the reliance on extensive training datasets.

6 Conclusion

This study investigates the label correlation issue in the field of time series modeling, which leads to a discrepancy
between the model assumption and data properties. To handle this issue, we develop FreDF, which bypasses label
autocorrelation by learning to forecast in the frequency domain. In the frequency domain where bases are orthogonal
and independent, a significant reduction of autocorrelation effect is observed. Experiments showcase FreDF’s capability
and adaptability across various tasks and forecast models.

Limitation & future works. In this work, we mainly employ the Fourier transform for domain transformation. Despite
empirical efficacy, the predefined set of sine bases lacks the ability to adapt to specific data properties. Alternative
transforms such PCA can produce orthogonal bases that better align with data properties, representing a valuable
avenue for future research. Additionally, the issue of label autocorrelation extends beyond time series, affecting diverse
contexts involving structural labels, such as 3D point clouds, speech, and images. The potential of FreDF to enhance
performance in these contexts warrants further exploration.
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Broader Impact

Time series modeling is a fundamental field in machine learning, with diverse potential applications in the real world,
none of which we feel must be specifically highlighted here. This study contributes to advancing the field by addressing
the effects of label correlations, a factor we believe to be pivotal for both the theoretical understanding and practical
application for time series modeling. We hold the belief that the issue of label autocorrelation is not confined solely
to time series data, pervading various fields where structural labels play a critical role: 3D point clouds, speech, and
images. A common oversight in these domains is the treatment of interconnected components—such as pixels in vision
tasks—as independent entities within the learning objective, which neglects the inherent correlations between these
components and therefore limiting the performance. The FreDF paradigm, a significant stride towards mitigating this
label autocorrelation issue, has potential to enhance various aspects of machine learning.
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A Overview of DML for Causation Strength Estimation

A.1 Motivation

In this section, we explore the rationale for employing causal inference methods, particularly double machine learning
(DML), to quantify the correlations of interest as discussed in Sections 3.2 and 4.1. According to Figure 1, our focus
is on the autocorrelation represented by Yt → Yt′ where 0 ≤ t < t′ < T. However, the exogenous fork structure
Yt ← L(n)→ Yt′ creates a pseudo correlation between Yt′ and Yt, as established in probabilistic graph analysis. In
this case, the autocorrelation Yt → Yt′ is confounded by the pseudo correlations from the fork structure, rendering
traditional correlation measures, such as Pearson correlation, ineffective for quantifying the autocorrelation Yt → Yt′ .

To effectively address the confounding effect introduced by the fork structure, it is essential to employ causal inference
methods, which excel in quantifying the causation while eliminating the confounding effect. Among various causal
inference approaches, DML is chosen for three key reasons: (1) its model-agnostic nature, which does not depend on
specific machine learning model specifications; (2) its ability to handle continuous treatments, which is crucial since
Yt is continuous; and (3) its ease of implementation and independence from exhaustive hyperparameter tuning. DML
offers a robust and reliable quantification to the autocorrelation that we care about.

A.2 Method

In this section, we detail the implementation of DML, a two-step procedure designed for estimating causal effects.
To align with standard causal inference notation, we define T ∈ R as the treatment variable, Y ∈ R as the outcome
variable, X ∈ RD as the confounder variable that needs to be controlled. The implementation of DML is depicted in
Figure 10 (b) which consists of two steps below.

• Orthogonalization. This step involves orthogonalizing both the outcome (Y) and the treatment (T ) with respect
to the confounders (X ). To this end, we first use two machine learning models, namely ϕ and ψ, to predict the
outcome and the treatment based on covariates. These predictions aim to capture the components in Y and T that are
influenced by the confounder X . Subsequently, such impact of X can be eliminated by calculating the residuals:

Ỹ = Y − ϕ(X ),
T̃ = T − ψ(X ).

(5)

• Regression. This step involves regressing the orthogonalized outcome Ỹ on the orthogonalized treatment T̃ . A linear
regression model is utilized for this purpose:

Ỹ = βT̃ + ϵ, (6)
where ϵ is the error term; β is the model coefficient that can be identified via ordinary least squares. The β can be
identified in a supervised learning manner, with objective to minimize the MSE of the prediction and real values. The
identified β is the estimated causal effect of the treatment on the outcome, which has eliminated the confounding
effect.

By regressing the orthogonalized outcome on the orthogonalized treatment, DML captures the direct effect of the
treatment on the outcome without the influence of confounding variables, as depicted in Figure 10 (c). That is, DML
isolates the desired causal effect T → Y from the confounding correlation T ← X → Y .

A.3 Experimental Settings

In this section, we outline the experimental settings implemented to employ DML for quantifying the correlations of
interest.

General settings. For the base learners ϕ and ψ, we opt for a linear regression model optimized using ordinary
least squares for its efficiency5. Following Appendix A.1, we treat the history sequence L as the confounder to adjust,
and simplify the process by considering the last step in L as representative. Moreover, we focus exclusively on the
correlations within the last feature of each dataset6. This focus makes Y a scalar value within the real number space
rather than a D-dimensional vector in this experiment.

5The linear regression model, chosen for its computational efficiency, is crucial in managing the experiment’s scale, where the
total number of DML estimators can be exceedingly high (e.g., 36,864 for T=192). This selection is justified as other more complex
models, like random forests, do not significantly alter the results in our experiments.

6This focus is aligned with the study’s objective of analyzing autocorrelations instead of inter-feature correlations, which
simplifies the interpretation of results.
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Figure 10: Visualization of confounding effect and DML approach for causation quantification. (a) The causal graph
where the pseudo correlation is caused by the fork structure T ← X → Y . (b) The implementation of DML, where β
is the identified strength of the causation T → Y . (c) The correlations identified by DML, which is indicative to the
expected causation T → Y .

Specifications for identifying time-domain causations. To assess the causation Yt → Yt′ , we treat Yt as the treatment
and Yt′ as the outcome. The DML model is trained using a set of N observations: {L(n)}n=1:N, {Yt(n)}n=1:N,
and {Yt′(n)}n=1:N. The coefficient β derived from the DML model is interpreted as the strength of the causation
Y n, t→ Yt′ .

Specifications for identifying frequency-domain causations. To quantify the causation Fk → Fk′ , we treat Fk

as the treatment and Fk′ as the outcome. The DML model is trained using a set of N observations: {L(n)}n=1:N,
{Fk(n)}n=1:N, and {Fk′(n)}n=1:N. The coefficient β derived from the DML model is interpreted as the strength of
the causation Fk → Fk′ . A notable complexity arises due to Fk being a complex number. Since DML and similar
causal inference methods are typically designed for real numbers instead of complex numbers, the identification in this
context entails separate consideration of the real and imaginary parts of Fk.

A.4 More Experimental Results

In this section, we provide comprehensive results of the identified causation strengths, which mirrors the autocorrelation
effect in the time and frequency domain. We first present the results on three different datasets: Traffic, ETTh1, and
ECL in Figure 11, with prediction length set to 192. Subsequently, we present the results given varying prediction
lengths: 48, 96, 192, 336 in Figure 12, based on the ECL dataset.

The experimental results show similar patterns with those reported in the main text. Specifically, the non-diagonal
elements in Figure 11 (a-c) and Figure 12 (a-d) demonstrate significant values, which affirms the presence of label
autocorrelation in the time domain. In contrast, the non-diagonal elements in Figure 11 (d-i) and Figure 12 (e-l) show
negligible values, which suggests that frequency components of F are almost independent given L.

In a nutshell, these findings verify the existence of label autocorrelation in the time domain which contradicts the
independence assumption of the DF paradigm. By transforming to the frequency domain, the dependency raised by
label autocorrelation is largely bypassed, which aligns with DF’s independence assumption as per Theorem 1.

B Theoretical Justification

Theorem B.1. Given input sequence L and label sequence Y , the negative log-likelihood of the model g parameterized
by θ can be expressed as (1) only if Yt is independent on Yt′ for any 1 ≤ t, t′ ≤ T given L, expressed as Yt ⊥⊥ Yt′ | L.

Proof. The proof follows establishing the Mean Squared Error (MSE) loss from the maximum likelihood principle,
a common approach in statistical analysis. What is new in this proof lies in considering multiple outputs with
interdependence, an aspect often neglected in prior research. Since the focus is on autocorrelation between time steps,
we consider the case D = 1 without loss of generality.

Firstly, define a dataset with N pairs of samples:

D = [(L(1), Y (1)), (L(2), Y (2)), ..., (L(N), Y (N))], (7)
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Figure 11: More comprehensive visualizations of label autocorrelation in different domains and datasets, with columns
representing different datasets: Traffic, ETTh1, and ECL, from left to right. Panels (a-d) depict the label correlation in
the time domain, where each matrix element at the i-th row and j-th column quantifies the absolute causation strength
from Yi to Yj . Panels (e-h) illustrate the label correlation in the frequency domain, specifically the absolute causation
strength from Fi to Fj , calculated using the real parts of the frequency components. Panels (i-l) showcase label
correlation in the frequency domain, utilizing the imaginary parts of the frequency components to calculate the absolute
causation strength from Fi to Fj . In these experiments, each element is elucidated using DML.
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Figure 12: More comprehensive visualizations of label autocorrelation in different domains and label lengths, with
columns representing label lengths H=48, 96, 192, 336 from left to right. Panels (a-d) depict the label correlation in the
time domain, where each matrix element at the i-th row and j-th column quantifies the absolute causation strength from
Yi to Yj . Panels (e-h) illustrate the label correlation in the frequency domain, specifically the absolute causation strength
from Fi to Fj , calculated using the real parts of the frequency components. Panels (i-l) showcase label correlation in
the frequency domain, utilizing the imaginary parts of the frequency components to calculate the absolute causation
strength from Fi to Fj . In these experiments, each element is elucidated using DML.

where L(n) ∈ RL and Y (n) ∈ RT are the n-th observations of the input and label sequence, respectively. The DF
paradigm generates forecasts as Ŷ (n) = gθ(L(n)). The likelihood of θ with respect to data can be expressed as

p(D | θ) = p ([((L(1), Y (1)), ..., (L(N), Y (N))] | θ)

=

N∏
n=1

p ((L(n), Y (n)) | θ).
(8)
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To identify θ using mean squared loss, assuming that given L, Y obeys a normal distribution N (g(L), ζ) with mean
g(L) ∈ RT and covariance matrix ζ ∈ RT×T. The negative log-likelihood can be written as:

− log p (D | θ) = − log

N∏
n=1

p ((L(n), Y (n)) | θ)

(1)
= − log

N∏
n=1

1

(2π)0.5T|ζ|0.5
exp

(
−1

2
(Y (n)− gθ(L(n)))⊤ζ−1(Y (n)− gθ(L(n)))

)
(2)
= − log

N∏
n=1

1

(2π)0.5Tσ
exp

(
− 1

2σ2
∥Y (n)− gθ(L(n))∥22

)
(3)
= c1 + c2 ∗

N∑
n=1

∥Y (n)− gθ(L(n))∥22,

(9)

with step-by-step deriviations as follows:

• (1) can be derived by specifying p as the probability density function of the normal distribution N (g(L(n)), ζ);

• (2) can be derived by assuming ζ = σ2I with I being identical matrix, which inherently assumes independence
among the elements in Y given L, represented as Yt ⊥⊥ Yt′ | L7;

• (3) simplifies the equation as a MSE loss with two ignorable constants c1 = N log
(
(2π)0.5Tσ

)
and c2 = 1/2σ2.

Therefore, deriving the equivalence between the MSE loss and negative log-likelihood hinges on the assumption of
conditional independence of Y given L (as per the derivation of step (2)); conversely, given conditional independence
of Y given L, we can derive the equivalence between the MSE loss and negative log-likelihood. The proof is therefore
completed.

The proof can be extended to multivariate time series (D ̸= 1). Overall, the derivation is identical to (9), with the mean
vector being T ·D-dimensional vector g(L(n)) ∈ RT·D and the covariance matrix being ζ ∈ RT·D×T·D. We assume
that different variates in the label sequence are independent8, making ζ a block diagonal matrix ζ = [ζ1, ζ2, ..., ζD]
where ζd ∈ RT×T denotes the covariance of different steps for the d-th variate. Then, similar to the step (2) in (9),
conditional independence assumption is necessary to make ζd = σ2I for subsequent derivation.

C Discussion of Transformation onto Different Bases

Transforming time series data onto predefined spaces is a fundamental aspect of signal processing and data analysis,
with various strategies available depending on the choice of bases. The transformation is implemented by projecting the
original signal onto a different set of predefined bases, such as the Fourier bases, Legendre bases, and Chebyshev bases.
These bases are known for their mutual orthogonality, and the selection of bases depends on the specific characteristics
and requirements of the analysis. We provide some formal definition of prevalent transformations below, where we
formulate signals as continuous functions for the ease of demonstration.

Fourier transform. It employs sinusoidal functions as bases which prove to be mutually orthogonal. hese polynomials
are particularly effective for analyzing periodic signals or signals with a strong frequency component. Let k be the
frequency, the associated basis function and projection onto it can be formulated as follows:

fk(t) = exp(−j(2π/L)kt),

Fk =

∫ ∞

−∞
x(t)fk(t)dt

(10)

Legendre transform. It uses the Legendre polynomials as bases which prove to be mutually orthogonal on the
interval [−1, 1]. These polynomials are particularly useful for representing functions defined on a finite interval, which

7The diagonals can be different values σ2
1 .σ

2
2 , ..., σ

2
T. We set them to σ for clarity of derivation.

8The assumption also adheres to current DF paradigm which simply adds the forecast error for different variates [16, 18].
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Figure 13: Forecast sequences generated by iTransformer on the snapshots where trend (a-b) and periodicity (c-d) are
dominant. (a, c) indicates models trained using canonical DF paradigm; (b, d) indicates models trained with FreDF. The
bases are selected as Fourier (b) and Legendre (d) polynomials.

makes them suitable for certain types of data smoothing and approximation tasks. The k-th Legendre polynomial and
the associated projection can be formulated as follows:

fk(t) =
1

2kk!

dk

dtk
[(t2 − 1)k],

Fk =

∫ 1

−1

x(t)fk(t)dt

(11)

Chebyshev transform. It uses the Chebyshev polynomials as bases. These bases are NOT originally orthogonal, but
can be proved mutually orthogonal on the interval [−1, 1] with respect to the weight 1/

√
1− t2. These polynomials are

particularly useful for approximating functions with rapid variations. The k-th Chebyshev polynomial and the associated
projection can be formulated as follows, where weighting factor accounts for the varying density of Chebyshev nodes,
making this basis well-suited for numerical computations and function approximations.

fk(t) = cos(k arccos(t)),

Fk =

∫ 1

−1

x(t)fk(t)√
1− t2

dt
(12)

Laguerre transform. It uses the Laguerre polynomials as bases. These bases are NOT originally orthogonal,
but can be proved mutually orthogonal on the interval [0,∞] with respect to the exponential weight exp(t). These
polynomials are particularly useful in quantum mechanics and other fields involving exponential decay. The k-th
Laguerre polynomial and the associated projection can be formulated as follows:

fk(t) = exp(t)
dk

dtk
(exp(−t)tk),

Fk =

∫ ∞

0

x(t)fk(t)

exp(t)
dt

(13)

These polynomial sets are adept at capturing specific data patterns, such as trends and periodicity that are challenging to
learn in the time domain. Their efficacy in FreDF is depicted in Figure 13. Specifically, learning in the time domain
fails to capture the increasing trends or follow the high-frequency periods. The involvement of FreDF largely handles
the issues and improves the forecast quality.

In summary, the choice of an orthogonal basis for transforming time series data—whether it be Fourier, Legendre,
or Chebyshev—depends on the nature of the data and the specific objectives of the analysis. Each basis has unique
properties that make it suitable for different types of applications. Understanding these properties is crucial for
effectively employing these transformation strategies in time series analysis.

D Reproduction Details

D.1 Dataset Descriptions

The datasets utilized in this study encompass a wide range of time series data, each with its unique characteristics and
temporal resolutions:
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Table 6: Detailed dataset descriptions. D denotes the number of variates. Forecast Length denotes the prediction lengths
investigated in this dataset. Frequency denotes the sampling interval of time points. Train, Validation, Test denotes the
number of samples employed in each split. The taxonomy and statistic are built upon recent works [37, 20].

Dataset D Forecast Length Train / validation / test Frequency Domain

ETTh1 7 96, 192, 336, 720 8545/2881/2881 Hourly Health

ETTh2 7 96, 192, 336, 720 8545/2881/2881 Hourly Health

ETTm1 7 96, 192, 336, 720 34465/11521/11521 15min Health

ETTm2 7 96, 192, 336, 720 34465/11521/11521 15min Health

Weather 21 96, 192, 336, 720 36792/5271/10540 10min Weather

ECL 321 96, 192, 336, 720 18317/2633/5261 Hourly Electricity

Traffic 862 96, 192, 336, 720 12185/1757/3509 Hourly Transportation

• ETT [16] comprises data on 7 factors related to electricity transformers, collected from July 2016 to July 2018. This
dataset is divided into four subsets: ETTh1 and ETTh2, with hourly recordings, and ETTm1 and ETTm2, documented
every 15 minutes.

• Weather [39] includes 21 meteorological variables gathered every 10 minutes throughout 2020 from the Weather
Station of the Max Planck Biogeochemistry Institute.

• ECL (Electricity Consumption Load) [39] presents hourly electricity consumption data for 321 clients.
• Traffic [39] features hourly road occupancy rates from 862 sensors in the San Francisco Bay area freeways, spanning

from January 2015 to December 2016.

Data processing and the division into training, validation, and testing sets adhere to the protocol established by
TimesNet [37]. This approach ensures chronological order division to prevent data leakage. Regarding forecast settings,
the length of the lookback series is standardized at 96 across the ETT, Weather, ECL, and Traffic datasets, with varying
prediction lengths of 96, 192, 336, and 720. Further dataset specifics are delineated in Table 6.

D.2 Implementation Details

The baseline models for this study were meticulously reproduced using training scripts obtained from the TimesNet
Repository [37] after reproducibility verification. Models were trained employing the Adam optimizer [12], with
learning rates selected from the set 10−3, 5× 10−4, 10−4 to minimize the MSE loss. A consistent batch size of 32
was employed across all models. The training regime was capped at a maximum of 10 epochs, incorporating an early
stopping mechanism that was activated upon a lack of improvement in validation performance over 3 epochs.

For the integration of the FreDF paradigm into existing models, we closely adhered to the original hyperparameter
configurations as specified in their respective publications. The only parameters finetuned were the learning rate and the
relative strength of frequency-domain alignment in [0,1]. Finetuning the learning rate was essential to accommodate
huge disparities in the magnitude of MSE loss observed between the time and frequency domains. Fine-tuning was
conducted to minimize the MSE averaged across all prediction lengths on the validation dataset. In fact, more practical
approach is finetuning for each prediction length separately, while we omit it since the efficacy of FreDF does not rely
on dedicate hyperparameter configurations, and current results suffice to showcase the efficacy of FreDF.

E More Experimental Results

E.1 Overall Performance

Long-term forecast. We provide comprehensive performance comparison on the long-term forecast task in Table
7. The iTransformer model is employed to operationalize the FreDF paradigm. Despite the iTransformer’s existing
performance gap compared to other baseline models, the incorporation of FreDF enhances its performance in the
majority of cases, securing the lowest MSE in 30 out of 35 cases and MAE in all 35 cases. The consistent improvement
across nearly all scenarios underscores FreDF’s robustness. The few instances where FreDF does not achieve the lowest
MSE is attributed to the inherent advantages of other models over the iTransformer in specific contexts (for example,
FreTS versus iTransformer on the Weather dataset).
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Table 7: Full results on the long-term forecasting task with forecast lengths T=96, 192, 336 and 720. The length of
history window is set to 96 for all baselines. Avg indicates the results averaged over forecasting lengths.

Models
FreDF iTransformer FreTS TimesNet Crossformer TiDE DLinear FEDformer Autoformer Transformer TCN LSTM

(Ours) (2024) (2023) (2023) (2023) (2023) (2023) (2022) (2021) (2017) (2017) (1998)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.324 0.362 0.346 0.379 0.339 0.374 0.338 0.379 0.375 0.415 0.364 0.387 0.345 0.372 0.389 0.427 0.468 0.463 0.591 0.549 0.887 0.613 0.639 0.557

192 0.373 0.385 0.392 0.400 0.382 0.397 0.389 0.400 0.453 0.474 0.398 0.404 0.381 0.390 0.402 0.431 0.573 0.509 0.704 0.629 0.877 0.626 0.624 0.546

336 0.402 0.404 0.427 0.422 0.421 0.426 0.429 0.428 0.548 0.526 0.428 0.425 0.414 0.414 0.438 0.451 0.596 0.527 1.171 0.861 0.890 0.636 0.655 0.568

720 0.469 0.444 0.494 0.461 0.485 0.462 0.495 0.464 0.857 0.713 0.487 0.461 0.473 0.451 0.529 0.498 0.749 0.569 1.307 0.893 0.911 0.653 0.706 0.598

Avg 0.392 0.399 0.415 0.416 0.407 0.415 0.413 0.418 0.558 0.532 0.419 0.419 0.404 0.407 0.440 0.451 0.596 0.517 0.943 0.733 0.891 0.632 0.656 0.567

E
T

T
m

2

96 0.173 0.252 0.184 0.266 0.190 0.282 0.185 0.264 0.267 0.349 0.207 0.305 0.195 0.294 0.194 0.284 0.240 0.319 0.317 0.408 3.125 1.345 1.488 0.875

192 0.241 0.298 0.257 0.315 0.260 0.329 0.254 0.307 0.472 0.479 0.290 0.364 0.283 0.359 0.264 0.324 0.300 0.349 1.069 0.758 3.130 1.350 1.514 0.897

336 0.298 0.334 0.315 0.351 0.373 0.405 0.314 0.345 0.919 0.702 0.377 0.422 0.384 0.427 0.319 0.359 0.339 0.375 1.325 0.869 3.185 1.375 1.608 0.942

720 0.398 0.393 0.419 0.409 0.517 0.499 0.434 0.413 4.874 1.601 0.558 0.524 0.516 0.502 0.430 0.424 0.423 0.421 2.576 1.223 4.203 1.658 2.417 1.203

Avg 0.278 0.319 0.294 0.335 0.335 0.379 0.297 0.332 1.633 0.782 0.358 0.404 0.344 0.396 0.302 0.348 0.326 0.366 1.322 0.814 3.411 1.432 1.757 0.979

E
T

T
h1

96 0.382 0.400 0.390 0.410 0.399 0.412 0.422 0.433 0.441 0.457 0.479 0.464 0.396 0.410 0.377 0.418 0.423 0.441 0.796 0.691 0.767 0.633 0.767 0.633

192 0.430 0.427 0.443 0.441 0.453 0.443 0.465 0.457 0.521 0.503 0.525 0.492 0.449 0.444 0.421 0.445 0.498 0.485 0.813 0.699 0.739 0.619 0.739 0.619

336 0.474 0.451 0.480 0.457 0.503 0.475 0.492 0.470 0.659 0.603 0.565 0.515 0.487 0.465 0.468 0.472 0.506 0.496 1.181 0.876 0.717 0.613 0.717 0.613

720 0.463 0.462 0.484 0.479 0.596 0.565 0.532 0.502 0.893 0.736 0.594 0.558 0.516 0.513 0.500 0.493 0.477 0.487 1.182 0.885 0.828 0.678 0.828 0.678

Avg 0.437 0.435 0.449 0.447 0.488 0.474 0.478 0.466 0.628 0.574 0.541 0.507 0.462 0.458 0.441 0.457 0.476 0.477 0.993 0.788 0.763 0.636 0.763 0.636

E
T

T
h2

96 0.289 0.337 0.301 0.349 0.350 0.403 0.320 0.364 0.681 0.592 0.400 0.440 0.343 0.396 0.347 0.391 0.383 0.424 2.072 1.140 3.171 1.364 1.678 0.950

192 0.363 0.385 0.382 0.402 0.472 0.475 0.409 0.417 1.837 1.054 0.528 0.509 0.473 0.474 0.430 0.443 0.557 0.511 5.081 1.814 3.222 1.398 1.749 1.009

336 0.419 0.426 0.430 0.434 0.564 0.528 0.449 0.451 3.000 1.472 0.643 0.571 0.603 0.546 0.469 0.475 0.470 0.481 3.564 1.475 3.306 1.452 1.814 1.030

720 0.415 0.437 0.447 0.455 0.815 0.654 0.473 0.474 3.024 1.399 0.874 0.679 0.812 0.650 0.473 0.480 0.501 0.515 2.469 1.247 3.599 1.565 2.025 1.126

Avg 0.371 0.396 0.390 0.410 0.550 0.515 0.413 0.426 2.136 1.130 0.611 0.550 0.558 0.516 0.430 0.447 0.478 0.483 3.296 1.419 3.325 1.445 1.817 1.029

E
C

L

96 0.144 0.233 0.148 0.239 0.189 0.277 0.171 0.273 0.148 0.248 0.237 0.329 0.210 0.302 0.200 0.315 0.199 0.315 0.252 0.352 0.688 0.621 0.348 0.420

192 0.159 0.247 0.167 0.258 0.193 0.282 0.188 0.289 0.161 0.263 0.236 0.330 0.210 0.305 0.207 0.322 0.215 0.327 0.266 0.364 0.587 0.582 0.323 0.400

336 0.172 0.263 0.179 0.272 0.207 0.296 0.208 0.304 0.191 0.289 0.249 0.344 0.223 0.319 0.226 0.340 0.232 0.343 0.292 0.383 0.590 0.588 0.319 0.398

720 0.204 0.294 0.209 0.298 0.245 0.332 0.289 0.363 0.226 0.314 0.284 0.373 0.258 0.350 0.282 0.379 0.268 0.371 0.287 0.371 0.602 0.601 0.325 0.406

Avg 0.170 0.259 0.176 0.267 0.209 0.297 0.214 0.307 0.182 0.279 0.251 0.344 0.225 0.319 0.229 0.339 0.228 0.339 0.274 0.367 0.617 0.598 0.329 0.406

Tr
af

fic

96 0.391 0.265 0.397 0.272 0.528 0.341 0.609 0.317 0.518 0.269 0.805 0.493 0.697 0.429 0.577 0.362 0.609 0.385 0.686 0.385 1.451 0.744 0.928 0.513

192 0.410 0.273 0.418 0.279 0.531 0.338 0.621 0.328 0.551 0.285 0.756 0.474 0.647 0.407 0.603 0.372 0.633 0.400 0.679 0.377 0.842 0.622 0.890 0.491

336 0.424 0.280 0.432 0.286 0.551 0.345 0.641 0.342 0.546 0.293 0.762 0.477 0.653 0.410 0.615 0.378 0.637 0.398 0.663 0.361 0.844 0.620 0.872 0.476

720 0.460 0.298 0.467 0.305 0.598 0.367 0.671 0.354 0.597 0.323 0.719 0.449 0.694 0.429 0.649 0.403 0.668 0.415 0.693 0.381 0.867 0.624 0.872 0.469

Avg 0.421 0.279 0.428 0.286 0.552 0.348 0.636 0.335 0.553 0.292 0.760 0.473 0.673 0.419 0.611 0.379 0.637 0.399 0.680 0.376 1.001 0.652 0.890 0.487

W
ea

th
er

96 0.164 0.202 0.201 0.247 0.184 0.239 0.178 0.226 0.177 0.246 0.202 0.261 0.197 0.259 0.221 0.304 0.284 0.355 0.332 0.383 0.610 0.568 0.246 0.308

192 0.220 0.253 0.250 0.283 0.223 0.275 0.227 0.266 0.227 0.297 0.242 0.298 0.236 0.294 0.275 0.345 0.313 0.371 0.634 0.539 0.541 0.552 0.279 0.341

336 0.275 0.294 0.302 0.317 0.272 0.316 0.283 0.305 0.278 0.346 0.287 0.335 0.282 0.332 0.338 0.379 0.359 0.393 0.656 0.579 0.565 0.569 0.320 0.372

720 0.356 0.347 0.370 0.362 0.340 0.363 0.359 0.355 0.368 0.407 0.351 0.386 0.347 0.384 0.408 0.418 0.440 0.446 0.908 0.706 0.622 0.601 0.378 0.410

Avg 0.254 0.274 0.281 0.302 0.255 0.299 0.262 0.288 0.262 0.324 0.271 0.320 0.265 0.317 0.311 0.361 0.349 0.391 0.632 0.552 0.584 0.572 0.306 0.357

1st Count 30 35 0 0 0 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
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Table 8: Full results on the short-term forecasting task with forecast lengths: yearly, quarterly, and monthly. Avg
indicates the results averaged over forecasting lengths.

Models
FreDF FreTS iTransformer Crossformer DLinear Fedformer Autoformer

(Ours) (2023) (2024) (2023) (2023) (2023) (2023)

Metric SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA

Yearly 13.556 3.046 0.798 13.576 3.068 0.801 13.797 3.143 0.818 68.344 17.601 4.305 14.307 3.094 0.827 13.648 3.089 0.806 18.477 4.26 1.101

Quarterly 10.374 1.229 0.919 10.361 1.223 0.916 10.503 1.248 0.932 73.822 13.272 8.191 10.5 1.237 0.928 10.612 1.246 0.936 14.254 1.829 1.314

Monthly 12.999 0.983 0.913 13.088 0.99 0.919 13.227 1.013 0.935 68.67 11.269 7.679 13.362 1.007 0.937 14.181 1.105 1.011 18.421 1.616 1.398

Others 5.294 3.614 1.127 5.563 3.71 1.17 5.101 3.419 1.076 98.68 79.677 22.948 5.12 3.649 1.114 4.823 3.243 1.019 6.772 4.963 1.495

Avg. 12.112 1.648 0.877 12.169 1.66 0.883 12.298 1.68 0.893 71.332 16.626 6.977 12.48 1.674 0.898 12.734 1.702 0.914 16.851 2.443 1.26

1st Count 3 3 3 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

Short-term forecast. We provide a detailed comparison for the short-term forecast task in Table 8, with FreTS
serving as the base model for FreDF implementation. Similar to the long-term forecast results, FreDF enhances
FreTS’s performance in most instances. It is noteworthy that some baseline models, initially designed for long-term
forecasting, fail to perform optimally in short-term scenarios (such as Crossformer), despite thorough fine-tuning.
Interestingly, FreTS exhibits superior performance over FreDF in quarterly forecast lengths. This observation aligns
with the expectation that FreDF is optimized to minimize overall average forecast error on the validation set rather than
targeting specific forecast lengths. While it is possible to fine-tune FreDF for each forecast length to cater to the distinct
properties and optimal hyperparameter settings of different tasks, this approach was not pursued as the current results
adequately demonstrate FreDF’s effectiveness.

Missing data imputation. We provide a thorough comparison on the missing data imputation task in Table 9 with
varying missing ratios, where iTransformer is selected as the base model for FreDF implementation. Similar to forecast
tasks above, FreDF enhances the imputation performance of iTransformer in all instances, hitting the minimum MSE
in 24 out of 30 cases and minimum MAE in 21 out of 30 cases. The efficacy lies in the effective capturing of label
autocorrelation among non-missing entries.

Showcases. We provide additional showcases illustrating the improvements in forecast sequences by integrating
FreDF in Figure 14 and 15. Overall, FreDF effectively eliminates blurs in the forecast sequences and captures high
frequency components in the label sequences. These successes are attributed to the unique capability of FreDF to
operate in the frequency domain. In this domain, the challenges of autocorrelation are naturally mitigated, and the
expression of high-frequency components becomes more straightforward. These factors underly FreDF’s success in
elevating the quality of forecast generation.

E.2 Generalization Studies

In this detailed investigation, we further explore the universality of the Frequency-enhanced Direct Forecast (FreDF)
paradigm in improving a range of neural forecasting models across diverse datasets. Our analysis encompasses the
impact of FreDF on four prominent models: iTransformer, DLinear, Autoformer, and Transformer. The performance
improvements facilitated by FreDF are quantitatively presented in Figure 16 across five distinct datasets, with forecast
errors averaged over various prediction lengths and error bars denoting 95% confidence intervals.9

FreDF demonstrates a significant ability to elevate the performance of these forecasting models, with Transformer-based
models like the Autoformer and Transformer experiencing particularly notable enhancements. A case in point is the
ECL dataset, where FreDF enables the Autoformer—a model introduced in 2021—to surpass the performance of
DLinear, a state-of-the-art model developed in 2023. This and other examples detailed in Appendix E vividly illustrate
FreDF’s effectiveness and general applicability.

The results presented here affirm the broad utility of FreDF in augmenting neural forecast models, suggesting its role
as a versatile and universally applicable training methodology in the field of time series forecasting. This evidence

9See footnote for error bar methodology.
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Table 9: Full results on the missing data imputation task with missing ratios 0.125, 0.25, 0.375, 0.5. The length of
history window is set to 96 for all baselines. Avg indicates the results averaged over missing ratios.

Models
FreDF iTransformer FreTS TimesNet Crossformer TiDE DLinear FEDformer Autoformer

(Ours) (2024) (2023) (2023) (2023) (2023) (2023) (2022) (2021)

pmiss MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

0.125 0.00153 0.02790 0.00213 0.03307 0.01102 0.07843 0.01152 0.07267 0.14570 0.26727 0.45052 0.45514 0.00148 0.02380 0.68262 0.38111 0.37654 0.35378

0.25 0.00287 0.03801 0.00402 0.04434 0.01089 0.07753 0.01245 0.07946 0.06801 0.17911 0.41777 0.45884 0.00154 0.02351 0.68235 0.38116 0.37059 0.35261

0.375 0.00256 0.03669 0.00458 0.04663 0.01100 0.07812 0.01407 0.08673 0.03494 0.12612 0.62935 0.55570 0.00175 0.02385 0.68191 0.38105 0.37877 0.36093

0.5 0.00152 0.02739 0.00363 0.04359 0.01102 0.07818 0.01676 0.09610 0.02696 0.11517 0.29342 0.39320 0.00192 0.02219 0.68119 0.38085 0.38052 0.36462

Avg 0.00212 0.03250 0.00359 0.04191 0.01098 0.07807 0.01370 0.08374 0.06891 0.17192 0.44776 0.46572 0.00167 0.02334 0.68202 0.38104 0.37660 0.35798

E
T

T
m

2

0.125 0.00363 0.03840 0.00398 0.04034 0.03194 0.13349 0.01189 0.06710 0.35271 0.43486 0.83023 0.62174 0.03822 0.12943 3.10388 1.31356 1.40160 0.80777

0.25 0.00437 0.04255 0.00431 0.04303 0.03591 0.13655 0.01795 0.08939 0.19400 0.31921 0.81402 0.61100 0.03063 0.11547 3.10364 1.31348 1.41033 0.81363

0.375 0.00352 0.03823 0.00342 0.03793 0.03250 0.13336 0.02742 0.11499 0.12863 0.25738 1.11225 0.73633 0.01709 0.08822 3.10328 1.31330 1.40812 0.81049

0.5 0.00137 0.02382 0.00160 0.02538 0.03126 0.13027 0.04053 0.14285 0.07394 0.19618 0.99459 0.70665 0.01025 0.06440 3.10527 1.31389 1.44617 0.81796

Avg 0.00322 0.03575 0.00333 0.03667 0.03290 0.13342 0.02445 0.10358 0.18732 0.30191 0.93777 0.66893 0.02405 0.09938 3.10402 1.31356 1.41655 0.81246

E
T

T
h1

0.125 0.00178 0.03059 0.00319 0.04102 0.01400 0.08181 0.00441 0.04403 0.21157 0.34941 0.36363 0.45350 0.00279 0.03617 0.68307 0.38026 0.43136 0.41184

0.25 0.00218 0.03405 0.00334 0.04205 0.01347 0.08097 0.00320 0.03850 0.15197 0.29466 0.28435 0.40516 0.00236 0.03324 0.68162 0.37973 0.43515 0.41584

0.375 0.00182 0.03108 0.00280 0.03852 0.01308 0.08017 0.00261 0.03540 0.11596 0.25758 0.21038 0.34029 0.00210 0.03121 0.68181 0.37975 0.44431 0.42505

0.5 0.00114 0.02414 0.00174 0.03008 0.01276 0.07918 0.00245 0.03472 0.07787 0.20468 0.13344 0.27102 0.00175 0.02844 0.68137 0.37992 0.44312 0.42387

Avg 0.00173 0.02996 0.00277 0.03792 0.01333 0.08053 0.00317 0.03817 0.13935 0.27658 0.24795 0.36749 0.00225 0.03226 0.68197 0.37992 0.43848 0.41915

E
T

T
h2

0.125 0.00222 0.03124 0.00473 0.04606 0.04485 0.13849 0.00535 0.04495 0.58587 0.54432 1.15859 0.73871 0.02287 0.10885 3.12756 1.31746 1.45130 0.84467

0.25 0.00407 0.04258 0.00571 0.05096 0.04647 0.13551 0.00494 0.04476 0.33565 0.41741 0.75643 0.59747 0.02491 0.11511 3.12891 1.31754 1.45386 0.84388

0.375 0.00306 0.03693 0.00452 0.04519 0.04830 0.13583 0.00512 0.04697 0.28196 0.38453 0.59470 0.52371 0.01944 0.10277 3.12788 1.31728 1.45464 0.84194

0.5 0.00129 0.02365 0.00249 0.03304 0.04900 0.13469 0.00604 0.05224 0.21866 0.32516 0.35775 0.40497 0.01465 0.08746 3.12882 1.31733 1.45997 0.84644

Avg 0.00266 0.03360 0.00436 0.04381 0.04715 0.13613 0.00536 0.04723 0.35553 0.41785 0.71687 0.56622 0.02046 0.10355 3.12829 1.31740 1.45494 0.84423

E
C

L

0.125 0.00029 0.01257 0.00187 0.03191 0.01018 0.08255 0.00466 0.04597 0.25009 0.36799 0.32942 0.42254 0.10658 0.23808 0.45884 0.41005 0.20147 0.29003

0.25 0.00061 0.01846 0.00216 0.03491 0.01022 0.08269 0.00341 0.03978 0.18890 0.32186 0.28831 0.40031 0.10682 0.23654 0.45887 0.41007 0.20618 0.29771

0.375 0.00090 0.02242 0.00211 0.03473 0.01022 0.08258 0.00230 0.03296 0.13777 0.27320 0.25310 0.37626 0.10500 0.23415 0.45886 0.41006 0.20998 0.30337

0.5 0.00103 0.02393 0.00175 0.03177 0.01025 0.08284 0.00171 0.02856 0.09879 0.22980 0.21280 0.34526 0.10362 0.23127 0.45891 0.41011 0.21322 0.30764

Abg 0.00071 0.01935 0.00197 0.03333 0.01022 0.08266 0.00302 0.03682 0.16889 0.29821 0.27091 0.38609 0.10550 0.23501 0.45887 0.41007 0.20771 0.29969

W
ea

th
er

0.125 0.00050 0.01259 0.00061 0.01446 0.00661 0.06123 0.00300 0.02110 0.09604 0.20783 0.36982 0.40486 0.00514 0.05275 0.40556 0.42631 0.13538 0.17599

0.25 0.00067 0.01513 0.00073 0.01715 0.00657 0.06105 0.00214 0.01830 0.04910 0.14269 0.29296 0.36483 0.00476 0.05019 0.40558 0.42635 0.13688 0.18177

0.375 0.00054 0.01443 0.00067 0.01700 0.00658 0.06113 0.00088 0.00924 0.04304 0.13516 0.17569 0.28913 0.00454 0.04811 0.40550 0.42633 0.13831 0.18700

0.5 0.00031 0.01107 0.00047 0.01429 0.00650 0.06071 0.00042 0.00463 0.03787 0.12878 0.12578 0.24598 0.00492 0.04961 0.40551 0.42632 0.13850 0.19051

Avg 0.00051 0.01331 0.00062 0.01573 0.00656 0.06103 0.00161 0.01332 0.05651 0.15362 0.24106 0.32620 0.00484 0.05016 0.40554 0.42633 0.13727 0.18382

1st Count 24 21 2 1 0 0 0 2 0 0 0 0 4 6 0 0 0 0
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Figure 14: Forecast sequences generated by iTransformer, Dlinear and Autoformer with and without FreDF. The
prediction length is set to 336 and the experiment is conducted on a snapshot of ETTm2.
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Figure 15: Forecast sequences generated by generated by iTransformer, Dlinear and Autoformer with and without
FreDF. The prediction length is set to 336 and the experiment is conducted on a snapshot of ETTm2.
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Figure 16: Performance of different forecast models with and without FreDF on the ETTh1 (a, f), ETTh2 (b, g), ETTm1
(c, h), ETTm2 (d, i), and Traffic (e, j) datasets. The forecast errors are averaged over prediction lengths and the error
bars represent 95% confidence intervals.

solidifies FreDF’s position as a powerful tool capable of addressing a wide array of forecasting challenges, marking it
as a significant contribution to the advancement of forecasting methodologies.

E.3 Hyperparameter Sensitivity

In this section, we investigate the influence of adjusting the frequency loss parameter, α, on the efficacy of the Frequency-
enhanced Direct Forecast (FreDF) paradigm. This exploration is conducted across three models: iTransformer,
Autoformer, and DLinear, with the respective results depicted in Figures 17, 18, and 19.

A consistent observation across these models is that incrementally increasing α from 0 to 1 generally leads to a decrease
in forecast error, although a marginal increase in error is noted as α approaches 1. For example, within the ECL dataset
for a prediction length of T=192, we witness a reduction in both Mean Absolute Error (MAE) and Mean Squared Error
(MSE), from approximately 0.258 and 0.167 down to 0.247 and 0.158, respectively. This pattern of error reduction,
observed across various prediction lengths and datasets, affirms the advantages of adopting a frequency domain learning
approach.

Notably, the most significant decrease in forecast error often occurs at α values close to 1, such as 0.8 for the ETTh1
dataset, rather than at the maximum value of 1. This finding suggests that integrating supervisory signals from both the
time and frequency domains can yield further enhancements in forecasting performance.
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Figure 17: Performance of iTransformer enhanced by FreDF given different relative importance of frequency loss α.
These experiments are conducted on ETTh1 (a), ETTh2 (b), ETTm1 (c), ETTm2 (d), ECL (e), Traffic (f) and Weather
(g) datasets. Different columns correspond to different forecast lengths T (from left to right: 96, 192, 336, 720, and
their average with shaded areas being 50% confidence intervals).
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Figure 18: Performance of Autoformer enhanced by FreDF given different relative importance of frequency loss α.
These experiments are conducted on ETTh1 (a), ETTh2 (b), ETTm1 (c), ETTm2 (d), ECL (e), Traffic (f) and Weather
(g) datasets. Different columns correspond to different forecast lengths T (from left to right: 96, 192, 336, 720, and
their average with shaded areas being 50% confidence intervals).
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Figure 19: Performance of DLinear enhanced by FreDF given different relative importance of frequency loss α. These
experiments are conducted on ETTh1 (a), ETTh2 (b), ETTm1 (c), ETTm2 (d), ECL (e), Traffic (f) and Weather (g)
datasets. Different columns correspond to different forecast lengths T (from left to right: 96, 192, 336, 720, and their
average with shaded areas being 50% confidence intervals).
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Table 10: Full results of the system-level ablation studies. The forecast model is specified as iTransformer. L(tmp) and
L(feq) indicates whether the temporal forecast loss and frequency forecast loss is incorporated in L(feq), respectively.

L(tmp) L(feq) Data T=96 T=192 T=336 T=720 Avg

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

! %

ETTm1 0.346 0.379 0.391 0.400 0.426 0.422 0.493 0.460 0.414 0.415
ETTh1 0.390 0.409 0.442 0.440 0.479 0.457 0.483 0.479 0.449 0.446
ECL 0.147 0.239 0.166 0.258 0.178 0.271 0.209 0.298 0.175 0.266
Traffic 0.397 0.271 0.417 0.278 0.431 0.286 0.466 0.305 0.428 0.285
Weather 0.201 0.246 0.250 0.282 0.302 0.317 0.370 0.361 0.280 0.302

% !

ETTm1 0.324 0.361 0.374 0.387 0.403 0.405 0.468 0.443 0.392 0.399
ETTh1 0.380 0.399 0.429 0.425 0.474 0.451 0.467 0.464 0.437 0.435
ECL 0.144 0.232 0.158 0.247 0.171 0.262 0.204 0.291 0.169 0.258
Traffic 0.399 0.267 0.419 0.276 0.437 0.284 0.470 0.304 0.431 0.283
Weather 0.165 0.205 0.225 0.255 0.278 0.295 0.359 0.349 0.257 0.276

! !

ETTm1 0.324 0.362 0.372 0.385 0.402 0.404 0.468 0.443 0.391 0.398
ETTh1 0.381 0.400 0.430 0.426 0.474 0.451 0.463 0.461 0.437 0.435
ECL 0.144 0.233 0.158 0.247 0.172 0.263 0.204 0.293 0.169 0.259
Traffic 0.390 0.265 0.410 0.272 0.424 0.280 0.460 0.298 0.421 0.279
Weather 0.163 0.202 0.220 0.252 0.274 0.293 0.356 0.346 0.253 0.273
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