3-3.高阶API示范
Pytorch没有官方的高阶API,一般需要用户自己实现训练循环、验证循环、和预测循环。
作者通过仿照keras的功能对Pytorch的nn.Module进行了封装,设计了torchkeras.KerasModel类,
实现了 fit, evaluate等方法,相当于用户自定义高阶API。
并示范了用它实现线性回归模型和DNN二分类模型。
torchkeras.KerasModel类看起来非常强大,但实际上它们的源码非常简单,不足200行。 我们在第一章中一、Pytorch的建模流程
用到的训练代码其实就是torchkeras库的核心源码。
import torch
import torchkeras
print("torch.__version__="+torch.__version__)
print("torchkeras.__version__="+torchkeras.__version__)
torch.__version__=2.0.1
torchkeras.__version__=3.9.3
一,线性回归模型
此范例我们通过使用torchkeras.KerasModel模型接口,实现线性回归模型。
1,准备数据
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset,DataLoader,TensorDataset
#样本数量
n = 400
# 生成测试用数据集
X = 10*torch.rand([n,2])-5.0 #torch.rand是均匀分布
w0 = torch.tensor([[2.0],[-3.0]])
b0 = torch.tensor([[10.0]])
Y = X@w0 + b0 + torch.normal( 0.0,2.0,size = [n,1]) # @表示矩阵乘法,增加正态扰动
# 数据可视化
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
plt.figure(figsize = (12,5))
ax1 = plt.subplot(121)
ax1.scatter(X[:,0],Y[:,0], c = "b",label = "samples")
ax1.legend()
plt.xlabel("x1")
plt.ylabel("y",rotation = 0)
ax2 = plt.subplot(122)
ax2.scatter(X[:,1],Y[:,0], c = "g",label = "samples")
ax2.legend()
plt.xlabel("x2")
plt.ylabel("y",rotation = 0)
plt.show()
#构建输入数据管道
ds = TensorDataset(X,Y)
ds_train,ds_val = torch.utils.data.random_split(ds,[int(400*0.7),400-int(400*0.7)])
dl_train = DataLoader(ds_train,batch_size = 16,shuffle=True,num_workers=2)
dl_val = DataLoader(ds_val,batch_size = 16,num_workers=2)
features,labels = next(iter(dl_train))
2,定义模型
class LinearRegression(nn.Module):
def __init__(self):
super(LinearRegression, self).__init__()
self.fc = nn.Linear(2,1)
def forward(self,x):
return self.fc(x)
net = LinearRegression()
from torchkeras import summary
summary(net,input_data=features);
--------------------------------------------------------------------------
Layer (type) Output Shape Param #
==========================================================================
Linear-1 [-1, 1] 3
==========================================================================
Total params: 3
Trainable params: 3
Non-trainable params: 0
--------------------------------------------------------------------------
Input size (MB): 0.000069
Forward/backward pass size (MB): 0.000008
Params size (MB): 0.000011
Estimated Total Size (MB): 0.000088
--------------------------------------------------------------------------
3,训练模型
from torchkeras import KerasModel
import torchmetrics
net = LinearRegression()
model = KerasModel(net=net,
loss_fn = nn.MSELoss(),
metrics_dict = {"mae":torchmetrics.MeanAbsoluteError()},
optimizer= torch.optim.Adam(net.parameters(),lr = 0.01))
dfhistory = model.fit(train_data=dl_train,
val_data=dl_val,
epochs=100,
ckpt_path='checkpoint',
patience=10,
monitor='val_loss',
mode='min')
[0;31m<<<<<< 🚀 mps is used >>>>>>[0m
89.00% [89/100] [03:30<00:26]
████████████████████100.00% [8/8] [val_loss=3.9876, val_mae=1.5804]
████████████████████100.00% [8/8] [val_loss=3.9876, val_mae=1.5804]
[0;31m<<<<<< val_loss without improvement in 10 epoch,early stopping >>>>>>
[0m
# 结果可视化
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
w,b = net.state_dict()["fc.weight"],net.state_dict()["fc.bias"]
plt.figure(figsize = (12,5))
ax1 = plt.subplot(121)
ax1.scatter(X[:,0],Y[:,0], c = "b",label = "samples")
ax1.plot(X[:,0],w[0,0]*X[:,0]+b[0],"-r",linewidth = 5.0,label = "model")
ax1.legend()
plt.xlabel("x1")
plt.ylabel("y",rotation = 0)
ax2 = plt.subplot(122)
ax2.scatter(X[:,1],Y[:,0], c = "g",label = "samples")
ax2.plot(X[:,1],w[0,1]*X[:,1]+b[0],"-r",linewidth = 5.0,label = "model")
ax2.legend()
plt.xlabel("x2")
plt.ylabel("y",rotation = 0)
plt.show()
4,评估模型
dfhistory.tail()
epoch | train_loss | train_mae | lr | val_loss | val_mae | |
---|---|---|---|---|---|---|
84 | 85 | 3.886948 | 1.602324 | 0.01 | 3.927154 | 1.568657 |
85 | 86 | 3.973511 | 1.596834 | 0.01 | 3.907408 | 1.565720 |
86 | 87 | 3.984756 | 1.599551 | 0.01 | 3.933845 | 1.571336 |
87 | 88 | 3.972810 | 1.605367 | 0.01 | 3.983606 | 1.578675 |
88 | 89 | 3.934518 | 1.605768 | 0.01 | 3.987594 | 1.580409 |
# 评估
model.evaluate(dl_val)
100%|████████████████████████████████████| 8/8 [00:01<00:00, 7.51it/s, val_loss=3.89, val_mae=1.56]
{'val_loss': 3.8944740295410156, 'val_mae': 1.5583606958389282}
5,使用模型
# 预测
dl = DataLoader(TensorDataset(X))
result = []
with torch.no_grad():
for batch in dl:
features = batch[0].to(model.accelerator.device)
res = net(features)
result.extend(res.tolist())
result = np.array(result).flatten()
print(result[:10])
[24.30810547 -0.18447018 10.48405933 10.95958519 20.05254555 25.67943192
25.41451073 22.11546135 9.20176315 19.23609543]
二,DNN二分类模型
1,准备数据
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset,DataLoader,TensorDataset
import torchkeras
import pytorch_lightning as pl
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
#正负样本数量
n_positive,n_negative = 2000,2000
#生成正样本, 小圆环分布
r_p = 5.0 + torch.normal(0.0,1.0,size = [n_positive,1])
theta_p = 2*np.pi*torch.rand([n_positive,1])
Xp = torch.cat([r_p*torch.cos(theta_p),r_p*torch.sin(theta_p)],axis = 1)
Yp = torch.ones_like(r_p)
#生成负样本, 大圆环分布
r_n = 8.0 + torch.normal(0.0,1.0,size = [n_negative,1])
theta_n = 2*np.pi*torch.rand([n_negative,1])
Xn = torch.cat([r_n*torch.cos(theta_n),r_n*torch.sin(theta_n)],axis = 1)
Yn = torch.zeros_like(r_n)
#汇总样本
X = torch.cat([Xp,Xn],axis = 0)
Y = torch.cat([Yp,Yn],axis = 0)
#可视化
plt.figure(figsize = (6,6))
plt.scatter(Xp[:,0],Xp[:,1],c = "r")
plt.scatter(Xn[:,0],Xn[:,1],c = "g")
plt.legend(["positive","negative"]);
ds = TensorDataset(X,Y)
ds_train,ds_val = torch.utils.data.random_split(ds,[int(len(ds)*0.7),len(ds)-int(len(ds)*0.7)])
dl_train = DataLoader(ds_train,batch_size = 100,shuffle=True,num_workers=2)
dl_val = DataLoader(ds_val,batch_size = 100,num_workers=2)
for features,labels in dl_train:
break
2,定义模型
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(2,4)
self.fc2 = nn.Linear(4,8)
self.fc3 = nn.Linear(8,1)
def forward(self,x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
y = self.fc3(x)
return y
from torchkeras import KerasModel
from torchkeras.metrics import Accuracy
net = Net()
loss_fn = nn.BCEWithLogitsLoss()
metric_dict = {"acc":Accuracy()}
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
model = KerasModel(net,
loss_fn = loss_fn,
metrics_dict= metric_dict,
optimizer = optimizer
)
from torchkeras import summary
summary(net,input_data=features);
--------------------------------------------------------------------------
Layer (type) Output Shape Param #
==========================================================================
Linear-1 [-1, 4] 12
Linear-2 [-1, 8] 40
Linear-3 [-1, 1] 9
==========================================================================
Total params: 61
Trainable params: 61
Non-trainable params: 0
--------------------------------------------------------------------------
Input size (MB): 0.000069
Forward/backward pass size (MB): 0.000099
Params size (MB): 0.000233
Estimated Total Size (MB): 0.000401
--------------------------------------------------------------------------
3,训练模型
dfhistory = model.fit(
train_data=dl_train,
val_data=dl_val,
epochs=100,
ckpt_path='checkpoint',
patience=10,
monitor='val_acc',
mode='max'
)
[0;31m<<<<<< 🚀 mps is used >>>>>>[0m
99.00% [99/100] [04:11<00:02]
████████████████████100.00% [12/12] [val_loss=0.2007, val_acc=0.9192]
████████████████████100.00% [12/12] [val_loss=0.2007, val_acc=0.9192]
[0;31m<<<<<< val_acc without improvement in 10 epoch,early stopping >>>>>>
[0m
# 结果可视化
fig, (ax1,ax2) = plt.subplots(nrows=1,ncols=2,figsize = (12,5))
ax1.scatter(Xp[:,0],Xp[:,1], c="r")
ax1.scatter(Xn[:,0],Xn[:,1],c = "g")
ax1.legend(["positive","negative"]);
ax1.set_title("y_true");
Xp_pred = X[torch.squeeze(net.forward(X)>=0.5)]
Xn_pred = X[torch.squeeze(net.forward(X)<0.5)]
ax2.scatter(Xp_pred[:,0],Xp_pred[:,1],c = "r")
ax2.scatter(Xn_pred[:,0],Xn_pred[:,1],c = "g")
ax2.legend(["positive","negative"]);
ax2.set_title("y_pred");
4,评估模型
model.evaluate(dl_val)
100%|████████████████████████████████| 12/12 [00:01<00:00, 10.94it/s, val_acc=0.924, val_loss=0.202]
{'val_loss': 0.20166969237228236, 'val_acc': 0.9241666793823242}
5,使用模型
device = model.accelerator.device
@torch.no_grad()
def predict(net,dl):
net.eval()
result = torch.cat([net.forward(t[0].to(device)) for t in dl])
return(result.data)
predictions = F.sigmoid(predict(net,dl_val)[:10])
predictions
tensor([[0.3352], [0.9824], [0.0443], [0.9682], [0.0016], [0.0012], [0.9986], [0.0016], [0.0079], [0.0654]], device=’mps:0’)