5-4. TensorBoard可视化
在我们的炼丹过程中,如果能够使用丰富的图像来展示模型的结构,指标的变化,参数的分布,输入的形态等信息,无疑会提升我们对问题的洞察力,并增加许多炼丹的乐趣。
TensorBoard正是这样一个神奇的炼丹可视化辅助工具。它原是TensorFlow的小弟,但它也能够很好地和Pytorch进行配合。甚至在Pytorch中使用TensorBoard比TensorFlow中使用TensorBoard还要来的更加简单和自然。
本篇结构:
一,可视化模型结构
二,可视化指标变化
三,可视化参数分布
四,可视化原始图像
五,可视化人工绘图
六,torchkeras中的TensorBoard回调函数
〇,Tensorboard可视化概述
Pytorch中利用TensorBoard可视化的大概过程如下:
首先在Pytorch中指定一个目录创建一个torch.utils.tensorboard.SummaryWriter日志写入器。
然后根据需要可视化的信息,利用日志写入器将相应信息日志写入我们指定的目录。
最后就可以传入日志目录作为参数启动TensorBoard,然后就可以在TensorBoard中愉快地看片了。
我们主要介绍Pytorch中利用TensorBoard进行如下方面信息的可视化的方法。
可视化模型结构: writer.add_graph
可视化指标变化: writer.add_scalar
可视化参数分布: writer.add_histogram
可视化原始图像: writer.add_image 或 writer.add_images
可视化人工绘图: writer.add_figure
这些方法尽管非常简单,但每次训练的时候都要调取调试还是非常麻烦的。
作者在torchkeras库中集成了一个torchkeras.callback.TensorBoard回调函数工具,
利用该工具配合torchkeras.LightModel可以用极少的代码在TensorBoard中实现绝大部分常用的可视化功能。
包括:
可视化模型结构
可视化指标变化
可视化参数分布
可视化超参调整
import torch
import torchkeras
print("torch.__version__="+torch.__version__)
print("torchkeras.__version__="+torchkeras.__version__)
torch.__version__=2.0.1
torchkeras.__version__=3.9.3
一,可视化模型结构
import torch
from torch import nn
from torch.utils.tensorboard import SummaryWriter
import torchkeras
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)
self.pool = nn.MaxPool2d(kernel_size = 2,stride = 2)
self.conv2 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)
self.dropout = nn.Dropout2d(p = 0.1)
self.adaptive_pool = nn.AdaptiveMaxPool2d((1,1))
self.flatten = nn.Flatten()
self.linear1 = nn.Linear(64,32)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(32,1)
def forward(self,x):
x = self.conv1(x)
x = self.pool(x)
x = self.conv2(x)
x = self.pool(x)
x = self.dropout(x)
x = self.adaptive_pool(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.relu(x)
y = self.linear2(x)
return y
net = Net()
print(net)
Net(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
(dropout): Dropout2d(p=0.1, inplace=False)
(adaptive_pool): AdaptiveMaxPool2d(output_size=(1, 1))
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear1): Linear(in_features=64, out_features=32, bias=True)
(relu): ReLU()
(linear2): Linear(in_features=32, out_features=1, bias=True)
)
from torchkeras import summary
summary(net,input_shape= (3,32,32));
--------------------------------------------------------------------------
Layer (type) Output Shape Param #
==========================================================================
Conv2d-1 [-1, 32, 30, 30] 896
MaxPool2d-2 [-1, 32, 15, 15] 0
Conv2d-3 [-1, 64, 11, 11] 51,264
MaxPool2d-4 [-1, 64, 5, 5] 0
Dropout2d-5 [-1, 64, 5, 5] 0
AdaptiveMaxPool2d-6 [-1, 64, 1, 1] 0
Flatten-7 [-1, 64] 0
Linear-8 [-1, 32] 2,080
ReLU-9 [-1, 32] 0
Linear-10 [-1, 1] 33
==========================================================================
Total params: 54,273
Trainable params: 54,273
Non-trainable params: 0
--------------------------------------------------------------------------
Input size (MB): 0.011719
Forward/backward pass size (MB): 0.359627
Params size (MB): 0.207035
Estimated Total Size (MB): 0.578381
--------------------------------------------------------------------------
writer = SummaryWriter('./data/tensorboard')
writer.add_graph(net,input_to_model = torch.rand(1,3,32,32))
writer.close()
%load_ext tensorboard
#%tensorboard --logdir ./data/tensorboard
from tensorboard import notebook
#查看启动的tensorboard程序
notebook.list()
No known TensorBoard instances running.
#启动tensorboard程序
notebook.start("--logdir ./data/tensorboard")
#等价于在命令行中执行 tensorboard --logdir ./data/tensorboard
#可以在浏览器中打开 http://localhost:6006/ 查看
二,可视化指标变化
有时候在训练过程中,如果能够实时动态地查看loss和各种metric的变化曲线,那么无疑可以帮助我们更加直观地了解模型的训练情况。
注意,writer.add_scalar仅能对标量的值的变化进行可视化。因此它一般用于对loss和metric的变化进行可视化分析。
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
# f(x) = a*x**2 + b*x + c的最小值
x = torch.tensor(0.0,requires_grad = True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)
optimizer = torch.optim.SGD(params=[x],lr = 0.01)
def f(x):
result = a*torch.pow(x,2) + b*x + c
return(result)
writer = SummaryWriter('./data/tensorboard')
for i in range(500):
optimizer.zero_grad()
y = f(x)
y.backward()
optimizer.step()
writer.add_scalar("x",x.item(),i) #日志中记录x在第step i 的值
writer.add_scalar("y",y.item(),i) #日志中记录y在第step i 的值
writer.close()
print("y=",f(x).data,";","x=",x.data)
y= tensor(0.) ; x= tensor(1.0000)
三,可视化参数分布
如果需要对模型的参数(一般非标量)在训练过程中的变化进行可视化,可以使用 writer.add_histogram。
它能够观测张量值分布的直方图随训练步骤的变化趋势。
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
# 创建正态分布的张量模拟参数矩阵
def norm(mean,std):
t = std*torch.randn((100,20))+mean
return t
writer = SummaryWriter('./data/tensorboard')
for step,mean in enumerate(range(-10,10,1)):
w = norm(mean,1)
writer.add_histogram("w",w, step)
writer.flush()
writer.close()
四,可视化原始图像
如果我们做图像相关的任务,也可以将原始的图片在tensorboard中进行可视化展示。
如果只写入一张图片信息,可以使用writer.add_image。
如果要写入多张图片信息,可以使用writer.add_images。
也可以用 torchvision.utils.make_grid将多张图片拼成一张图片,然后用writer.add_image写入。
注意,传入的是代表图片信息的Pytorch中的张量数据。
import torch
import torchvision
from torch import nn
from torch.utils.data import Dataset,DataLoader
from torchvision import transforms as T,datasets
transform_img = T.Compose(
[T.ToTensor()])
def transform_label(x):
return torch.tensor([x]).float()
ds_train = datasets.ImageFolder("./eat_pytorch_datasets/cifar2/train/",
transform = transform_img,target_transform= transform_label)
ds_val = datasets.ImageFolder("./eat_pytorch_datasets/cifar2/test/",
transform = transform_img,target_transform= transform_label)
print(ds_train.class_to_idx)
dl_train = DataLoader(ds_train,batch_size = 50,shuffle = True)
dl_val = DataLoader(ds_val,batch_size = 50,shuffle = True)
images,labels = next(iter(dl_train))
# 仅查看一张图片
writer = SummaryWriter('./data/tensorboard')
writer.add_image('images[0]', images[0])
writer.close()
# 将多张图片拼接成一张图片,中间用黑色网格分割
writer = SummaryWriter('./data/tensorboard')
# create grid of images
img_grid = torchvision.utils.make_grid(images)
writer.add_image('image_grid', img_grid)
writer.close()
# 将多张图片直接写入
writer = SummaryWriter('./data/tensorboard')
writer.add_images("images",images,global_step = 0)
writer.close()
{'0_airplane': 0, '1_automobile': 1}
五,可视化人工绘图
如果我们将matplotlib绘图的结果再 tensorboard中展示,可以使用 add_figure.
注意,和writer.add_image不同的是,writer.add_figure需要传入matplotlib的figure对象。
import torch
import torchvision
from torch import nn
from torch.utils.data import Dataset,DataLoader
from torchvision import transforms as T,datasets
transform_img = T.Compose(
[T.ToTensor()])
def transform_label(x):
return torch.tensor([x]).float()
ds_train = datasets.ImageFolder("./eat_pytorch_datasets/cifar2/train/",
transform = transform_img,target_transform= transform_label)
ds_val = datasets.ImageFolder("./eat_pytorch_datasets/cifar2/test/",
transform = transform_img,target_transform= transform_label)
print(ds_train.class_to_idx)
dl_train = DataLoader(ds_train,batch_size = 50,shuffle = True)
dl_val = DataLoader(ds_val,batch_size = 50,shuffle = True)
images,labels = next(iter(dl_train))
{'0_airplane': 0, '1_automobile': 1}
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
from matplotlib import pyplot as plt
figure = plt.figure(figsize=(8,8))
for i in range(9):
img,label = ds_train[i]
img = img.permute(1,2,0)
ax=plt.subplot(3,3,i+1)
ax.imshow(img.numpy())
ax.set_title("label = %d"%label.item())
ax.set_xticks([])
ax.set_yticks([])
plt.show()
writer = SummaryWriter('./data/tensorboard')
writer.add_figure('figure',figure,global_step=0)
writer.close()
六,torchkeras中的TensorBoard回调函数
下面是一个在torchkeras中调用TensorBoard回调函数实现 常用可视化功能的完整范例。
非常简单。
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset,DataLoader,TensorDataset
import torchkeras #Attention this line
1,准备数据
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
#number of samples
n_positive,n_negative = 4000,4000
#positive samples
r_p = 5.0 + torch.normal(0.0,1.0,size = [n_positive,1])
theta_p = 2*np.pi*torch.rand([n_positive,1])
Xp = torch.cat([r_p*torch.cos(theta_p),r_p*torch.sin(theta_p)],axis = 1)
Yp = torch.ones_like(r_p)
#negative samples
r_n = 8.0 + torch.normal(0.0,1.0,size = [n_negative,1])
theta_n = 2*np.pi*torch.rand([n_negative,1])
Xn = torch.cat([r_n*torch.cos(theta_n),r_n*torch.sin(theta_n)],axis = 1)
Yn = torch.zeros_like(r_n)
#concat positive and negative samples
X = torch.cat([Xp,Xn],axis = 0)
Y = torch.cat([Yp,Yn],axis = 0)
#visual samples
plt.figure(figsize = (6,6))
plt.scatter(Xp[:,0],Xp[:,1],c = "r")
plt.scatter(Xn[:,0],Xn[:,1],c = "g")
plt.legend(["positive","negative"]);
ds = TensorDataset(X,Y)
ds_train,ds_val = torch.utils.data.random_split(ds,[int(len(ds)*0.7),len(ds)-int(len(ds)*0.7)])
dl_train = DataLoader(ds_train,batch_size = 16,shuffle=True)
dl_val = DataLoader(ds_val,batch_size = 16)
for features,labels in dl_train:
break
print(features.shape)
print(labels.shape)
torch.Size([16, 2])
torch.Size([16, 1])
2,定义模型
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(2,16)
self.fc2 = nn.Linear(16,8)
self.fc3 = nn.Linear(8,1)
def forward(self,x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
y = self.fc3(x) #don't need nn.Sigmoid()
return y
from torchkeras.metrics import Accuracy
from torchkeras import KerasModel
net = Net()
loss_fn = nn.BCEWithLogitsLoss()
metric_dict = {"acc":Accuracy()}
lr = 0.0001
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
model = KerasModel(net,
loss_fn = loss_fn,
metrics_dict= metric_dict,
optimizer = optimizer
)
from torchkeras import summary
summary(model,input_data=features);
--------------------------------------------------------------------------
Layer (type) Output Shape Param #
==========================================================================
Linear-1 [-1, 16] 48
Linear-2 [-1, 8] 136
Linear-3 [-1, 1] 9
==========================================================================
Total params: 193
Trainable params: 193
Non-trainable params: 0
--------------------------------------------------------------------------
Input size (MB): 0.000069
Forward/backward pass size (MB): 0.000191
Params size (MB): 0.000736
Estimated Total Size (MB): 0.000996
--------------------------------------------------------------------------
3,训练模型
from torchkeras.kerascallbacks import TensorBoardCallback
tb = TensorBoardCallback(
save_dir='./data/tensorboard',
model_name='model',
log_weight=False,
log_weight_freq=5,
)
model.fit( train_data=dl_train,
val_data=dl_val,
epochs=100,
ckpt_path='checkpoint',
patience=10,
monitor='val_acc',
mode='max',
callbacks=[tb],
plot=True,
quiet=None,
cpu=True)
[0;31m<<<<<< 🐌 cpu is used >>>>>>[0m
████████████████████100.00% [150/150] [val_loss=0.1839, val_acc=0.9204]
[0;31m<<<<<< val_acc without improvement in 10 epoch,early stopping >>>>>>
[0m
epoch | train_loss | train_acc | lr | val_loss | val_acc | |
---|---|---|---|---|---|---|
0 | 1 | 0.730981 | 0.531071 | 0.0001 | 0.687867 | 0.547500 |
1 | 2 | 0.671247 | 0.563750 | 0.0001 | 0.660181 | 0.545417 |
2 | 3 | 0.654105 | 0.541607 | 0.0001 | 0.648438 | 0.538750 |
3 | 4 | 0.645079 | 0.536429 | 0.0001 | 0.640090 | 0.526667 |
4 | 5 | 0.637027 | 0.536071 | 0.0001 | 0.631932 | 0.551667 |
... | ... | ... | ... | ... | ... | ... |
64 | 65 | 0.183212 | 0.928571 | 0.0001 | 0.184222 | 0.923750 |
65 | 66 | 0.182579 | 0.930357 | 0.0001 | 0.183904 | 0.922917 |
66 | 67 | 0.182244 | 0.928571 | 0.0001 | 0.183120 | 0.923333 |
67 | 68 | 0.181906 | 0.929286 | 0.0001 | 0.182938 | 0.922500 |
68 | 69 | 0.181513 | 0.928214 | 0.0001 | 0.183888 | 0.920417 |
69 rows × 6 columns
4, TensorBoard可视化监控
#!tensorboard --logdir="'./data/tensorboard'" --bind_all --port=6006
from tensorboard import notebook
notebook.list()
notebook.start("--logdir './data/tensorboard' --port=6006")